It’s Hard to Kill Blood Stem Cells—Now We Know Why

From Columbia News June 28, 2019

In Brief

For most of their lives, our hematopoietic stem cells (HSCs)—which produce all of our blood and immune cells—are quiet and inactive. But they also are the toughest cells in the blood system, able to survive exposure to levels of radiation or viral infections that kill most other blood cells.

A new study from researchers in Columbia’s Stem Cell Initiative has discovered how HSCs cheat death, which could lead to new therapies for blood cancers and other diseases related to aging and improve stem cell transplantation.

Background

HSCs are typically quiescent and leave the work of producing new blood cells to their descendants, blood progenitor cells, which specialize in producing large quantities of specific cell types.

When infections or other inflammatory insults kill most progenitors and mature blood cells, HSCs wake up and regenerate the entire blood system. 

What protects the HSCs from death and triggers them to regenerate is not well understood. 

What the Researchers Found

“The finding turns the field on its head,” says Emmanuelle Passegué, PhD, director of the Columbia Stem Cell Initiative and the study’s senior author.

For years, researchers have thought TNF-alpha—a molecule released during infection and inflammation—was a danger to HSCs.

But these studies were often unable to fully separate HSCs from other types of cells. Using new and improved techniques, Passegué and postdoctoral fellow Masayuki Yamashita, PhD, found that TNF-alpha protects HSCs while triggering the death of progenitors.

HSCs survive because TNF-alpha activates a unique mechanism in HSCs that shields them from a particular form of cell death called necroptosis. Stem cells also become primed to regenerate the blood system when TNF-alpha disappears.

Survival Mechanisms Hijacked by Malignant or Aged Cells

The programs triggered by TNF-alpha may be a defense against viral infections. “Viruses can easily infect progenitor cells and turn them into virus factories,” Passegué says. “Purging these cells while preserving the stem cells can eliminate the infection and let the organism rebuild.”

But that’s only a great strategy when none of the cells are behaving badly. 

The survival program that protects HSCs can be hijacked by malignant blood cells, as Passegué and Yamashita found in cells from patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS).

Aged HSCs that may have acquired deleterious mutations over time can also tap the survival program to prevent death, which may lead to other age-related diseases. 

Next Steps

By looking at the activity of a handful of genes, Yamashita and Passegué can determine if a cell will live or die in response to TNF-alpha.

That may help determine if patients with myelodysplastic syndromes—where TNF-alpha is elevated—will develop leukemia. Patients with MDS can progress rapidly to leukemia or remain stable for decades, but physicians currently have no way to make a prognosis. 

Their findings also may lead to improvements in bone marrow and stem cell transplantation. Passegué and Yamashita identified a short window of time when HSCs are vulnerable to TNF-alpha exposure and necroptosis killing. This effect dramatically impairs transplantation and regeneration of the blood system; understanding the process may allow physicians to mitigate that effect.

Finally, the results also may explain rare cases of anemia and other blood disorders that have been reported with the clinical use of TNF-α inhibitors for the treatment of rheumatoid arthritis and other inflammatory diseases.

More Information
Emmanuelle Passegué, PhD, also is the Alumni Professor of Genetics & Development at Columbia University Vagelos College of Physicians and Surgeons.
Masayuki Yamashita, PhD, is now assistant professor of stem cell and molecular medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science at the University of Tokyo. 
The study, “TNF-α Coordinates Hematopoietic Stem Cell Survival and Myeloid Regeneration,” was published online, ahead of print, in Cell Stem Cell on June 20.
This work was supported in part by the NIH (grants P30CA013696, 2R01HL092471, R01HL111266, and R35HL135763); a Leukemia and Lymphoma Society Scholar Award (to E.P.), and an Overseas Research Fellowship from the Japan Society for the Promotion of Science (to M.Y.).
The authors report no conflicts of interest.