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SUMMARY

Multipotent stromal cells (MSCs) and their osteo-
blastic lineage cell (OBC) derivatives are part of the
bone marrow (BM) niche and contribute to hemato-
poietic stem cell (HSC) maintenance. Here, we
show that myeloproliferative neoplasia (MPN) pro-
gressively remodels the endosteal BM niche into a
self-reinforcing leukemic niche that impairs normal
hematopoiesis, favors leukemic stem cell (LSC) func-
tion, and contributes to BM fibrosis. We show that
leukemic myeloid cells stimulate MSCs to overpro-
duce functionally altered OBCs, which accumulate
in the BM cavity as inflammatory myelofibrotic cells.
We identify roles for thrombopoietin, CCL3, and
direct cell-cell interactions in driving OBC expan-
sion, and for changes in TGF-b, Notch, and inflam-
matory signaling in OBC remodeling. MPN-
expanded OBCs, in turn, exhibit decreased expres-
sion of many HSC retention factors and severely
compromised ability to maintain normal HSCs, but
effectively support LSCs. Targeting this pathological
interplay could represent a novel avenue for treat-
ment of MPN-affected patients and prevention of
myelofibrosis.

INTRODUCTION

Hematopoietic stem cells (HSCs) sustain the life-long production

of all types of mature blood cells (Orkin and Zon, 2008). At steady

state, HSCs primarily reside in the bone marrow (BM) cavity,

where they interact with different types of stromal cells ex-

pressing important regulatory molecules including stem cell

factor (SCF), C-X-C motif chemokine 12 (CXCL12, also called

SDF1a), and transforming growth factor b (TGF-b) (Frenette

et al., 2013). Although early mouse studies implicated mature

bone-forming osteoblasts (Calvi et al., 2003), recent work has
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refined the identity of HSC-supportive cells to several popula-

tions of multipotent stromal cells (MSCs) and their early osteo-

blastic lineage cell (OBC) derivatives. Both Runx2-expressing

OBCs (Chitteti et al., 2010) and perivascular MSC-like cells ex-

pressing either nestin (Nes) (Méndez-Ferrer et al., 2010), high

levels of CXCL12 (so-called Cxcl12-abundant reticular cells, or

CAR cells) (Omatsu et al., 2010), or leptin receptor (Lepr) (Ding

et al., 2012) have been shown to be important for HSC mainte-

nance. However, not all MSC derivatives have HSC-supportive

activity, and, in fact, mature adipocytes negatively impact HSC

function (Naveiras et al., 2009). Other known HSC-supporting

BM niche cells include endothelial cells (ECs) (Doan and Chute,

2012) and ectodermally derived nonmyelinating Schwann cells

(Yamazaki et al., 2011). Therefore, the emerging picture of the

HSC BM niche is a complex array of regulatory cell types with

a predominant role for MSCs and their early OBC derivatives in

forming both perivascular end endosteal BM niches that main-

tain HSCs and regulate blood production.

Deregulation of HSC activity is an important step in the devel-

opment of myeloid malignancies (Passegué et al., 2003). This is

particularly the case for myeloproliferative neoplasms (MPNs), a

class of clonal disorders that are propagated by leukemic stem

cells (LSCs) arising from transformed HSCs and carrying onco-

genic lesions such as BCR/ABL for chronic myelogenous

leukemia (CML) or activating Jak2 mutations for polycythemia

vera (PV), essential thrombocythosis, and primary myelofibrosis

(PMF) (Van Etten and Shannon, 2004; Levine andGilliland, 2008).

Deregulation of the BM microenvironment is another important

factor in the development of myeloid malignancies (Lane et al.,

2009). Genetic ablation of the retinoic acid receptor g (Rar-g)

or retinoblastoma (Rb) genes in BM stromal cells promotes

MPN development (Walkley et al., 2007a, 2007b), whereas inac-

tivation of the microRNA-processing enzyme dicer in immature

osterix (Osx)-expressing osteoprogenitors causes myelodys-

plastic syndrome (MDS) (Raaijmakers et al., 2010). In addition,

changes in the signaling activity of OBCs can alter HSC

numbers and cause lineage-specific defects in blood production

(Schepers et al., 2012). Recent evidence indicates that myeloid

malignancies also affect the function of the BM microenviron-

ment. In particular, decreased expression of Cxcl12 by BM
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Figure 1. HSC-Supportive Activity of Endosteal OBCs

(A) Flow cytometry approach used to identify endosteal BM stromal populations.

(B) Average numbers of ECs, MSCs, and OBCs contained in the endosteal (Lin�/CD45�) BM stromal fraction of WT mice (n = 23 in seven independent ex-

periments).

(C and D) Immunophenotype (C) and frequencies (D) of GFP+ endosteal ECs, MSCs, and OBCs in Osx-gfp, Cxcl12-gfp, and Nes-gfp reporter mice (n = 2–4 per

genotype; nd, not determined).

(E) Frequency of GFP+/hi cells in endosteal MSCs and OBCs of Osx-gfp, Cxcl12-gfp, and Nes-gfp reporter mice (green histograms). Gray histograms indicate

background GFP fluorescence levels in control populations.

(F) Schematic of the short-term coculture of HSCs with or without OBCs, and follow up analyses.

(legend continued on next page)
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stromal cells is observed in chronic-phase CML (Zhang et al,

2012), thereby impairing support for normal HSCs, whereas

severe osteoblastic defects are found in blast-crisis CML,

leading to a major loss of bone (Frisch et al., 2012). However,

much remains to be understood about how leukemic hematopoi-

esis impacts the BM microenvironment and, in turn, how

changes in the activity of specific BM niche cells contribute to

MPN pathogenesis. Here, we use an inducible Scl-tTA::TRE-

BCR/ABL double-transgenic mouse model of human chronic-

phase CML (Reynaud et al., 2011) to investigate the effect of

MPN development on the endosteal BM niche.

RESULTS

Endosteal OBCs Contain Cells with HSC-Supporting
Activity
Several flow cytometry approaches have been developed for

identifying endosteum-associated BM stromal cells. Here, we

used a previously described protocol to isolate ECs (Lin�/
CD45�/CD31+/Sca-1+), MSCs (Lin�/CD45�/CD31�/CD51+/
Sca-1+), and OBCs (Lin�/CD45�/CD31�/CD51+/Sca-1�) from

hematopoietic cell-depleted, collagenase-treated crushed

bones of wild-type (WT) mice (Figures 1A and 1B) (Winkler

et al., 2010). In vitro characterization of these populations

showed the expected high frequency of colony-forming unit

fibroblast (CFU-F) activity and platelet-derived growth factor

receptor a (PDGFRa) levels in MSCs (Figures S1A and S1B avail-

able online). In contrast, OBCs had lower CFU-F frequencies and

PDGFRa levels, whereas ECs lacked PDGFRa expression and

were devoid of CFU-F activity. Consistent with their lineage

relationship, both MSCs and OBCs produced alkaline-

phosphatase-positive colonies and von Kossa-positive bone

nodules upon osteoblastic differentiation, with MSCs giving

rise to larger colonies than their OBC derivatives ( Figure S1A).

These results confirm reliable enrichment of endosteal MSCs

and their OBC derivatives using this flow-cytometry protocol.

We then used GFP reporter mice to determine the relationship

between endosteal subsets and BM niche cells with demon-

strated HSC-supportive activity. Strikingly, we found the pres-

ence of Osx+ osteoprogenitors, CXCL12hi CAR cells, and Nes+

MSC-like cells within the OBC fraction (Figures 1C and 1D),

with frequencies ranging from �10% in Osx-gfp and Cxcl12-

gfp mice to �70% in Nes-gfp mice (Figure 1E). As expected,

we also found that �35% of the MSC fraction was GFP+ in

Nes-gfp mice (Méndez-Ferrer et al., 2010), whereas less than

1%was GFP+/hi in eitherOsx-gfp orCxcl12-gfpmice (Figure 1E).

Additional flow-cytometry analyses of stromal versus hemato-

poietic BM cells (Figure S1C) and immunofluorescence analyses

of bone sections (Figure S1D) confirmed that most Osx-GFP+

cells were located at the bone surface, whereas Cxcl12-GFPhi

and Nes-GFP+ cells were found both at the bone surface and

throughout the BM cavity. These results indicate that the endos-

teal OBC fraction contains some of the previously described

HSC niche cells.
(G) Cell numbers and methylcellulose CFU activity.

(H) Transplantation in lethally irradiatedWTCD45.1 recipients (n = 3–5mice per gro

every 4 weeks and analyzed for the percentage of CD45.2+ donor-derived cells

Data are means ± SD; *p % 0.05, **p % 0.01, ***p % 0.001. See also Figure S1.
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To confirm that endosteal OBCs are able to maintain HSCs,

we performed short-term in vitro coculture experiments wherein

500 WT HSCs (Lin�/c-Kit+/Sca-1+/Flk2�/CD150+/CD48�) were

grown for 4 days with or without 2,000 purified OBCs (Figure 1F).

As expected, HSCs cocultured with OBCs showed more in vitro

hematopoietic expansion and higher myeloid differentiation

potential in methylcellulose than HSCs cultured on plastic (Fig-

ure 1G). Mice transplanted with the progeny of 500 HSCs cocul-

tured with OBCs also displayed significantly higher levels of

donor chimerism than mice receiving cells cultured without

OBCs (Figure 1H). However, the chimerism level was still lower

than in mice transplanted with 500 freshly isolated WT HSCs,

indicating that OBCs were primarily maintaining HSC function

without increasing their numbers. In all cases, we observed

similar multilineage reconstitution (data not shown). These re-

sults directly demonstrate that phenotypically defined endosteal

OBCs have HSC-supporting activity.

MPN Development Causes Endosteal OBC Expansion
and Myelofibrosis Development
We then used our inducibleScl-tTA::TRE-BCR/ABL (BA) double-

transgenic mouse model of chronic-phase CML (Reynaud et al.,

2011) to address how MPN development affects the endosteal

BM niche. We first quantified the numbers of endosteal stromal

BM cells in age-matched littermate controls (Ctrl) and primary

diseased BA mice, which develop severe granulocytic expan-

sion within 5 to 6 weeks upon doxycycline withdrawal and

BCR/ABL induction (Figures 2A and 2B). Remarkably, we found

a large increase in OBC numbers in BAmice, with MSC numbers

remaining largely unaffected and EC numbers actually

decreasing (Figures 2C and S2A). This OBC expansion was

associated with an accumulation of myelofibrotic cells with

increased collagen deposition (Figure S2B), as previously

reported in both primary BA mice (Reynaud et al., 2011) and

human CML-affected patients (Thiele and Kvasnicka, 2006).

Although no significant changes in bone mineral density were

detected (data not shown), micro-computed-tomography ana-

lyses of proximal tibiae revealed increased trabecular thickening

of primary and secondary spongiosa and significant expansion

of the trabecular bone below the growth plate in BA mice (Fig-

ure S2C). Although trabecular numbers and spacing were

unchanged, trabeculae were thicker and showed increased con-

nectivity (Figure S2D). In contrast, cortical bone formation was

unaffected (Figure S2C), and tartrate-resistant acid phosphatase

(TRAP) staining showed no qualitative differences in osteoclast

numbers between Ctrl and BA mice (Figure S2E). To exclude

the possibility that BCR/ABLwas expressed in OBCs, we gener-

ated Scl-tTA::TetO-H2B-gfp double-transgenic reporter mice

(Figure S2F). Whereas some ECs (Lécuyer and Hoang, 2004)

and all hematopoietic BM cells including HSCs were GFP+, no

cells within the OBC and MSC fractions expressed GFP. This

finding indicates that the Scl/Tal-1 30-enhancer element is not

active in endosteal MSCs and OBCs and rules out an intrinsic

effect of BCR/ABL expression in these populations. These
up, with results replicated in another independent experiment). Mice were bled

(� cult., no culture).
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Figure 2. MPN Hematopoiesis Induces Expansion of Endosteal OBCs

(A) Overall experimental design. Primary diseased Scl-tTA::TRE-BCR/ABL (BA) and age-matched control (Ctrl) mice were analyzed �6 weeks after doxycycline

(dox) withdrawal (n = 9–14 per group in four independent experiments). Purified CD45.2 HSCs (500– 4,000 cells) were transplanted into lethally irradiated WT

CD45.1 recipients (n = 10–13 mice per group in six independent experiments), and unfractionated CD45.2 BM cells (2 3 106 cells) into WT or Osx-gfp F1s

recipients (n = 3–6 mice per group in two independent experiments).

(B) Percentage of Gr-1+/Mac-1+ myeloid cells in the blood of primary Ctrl and BA mice.

(C) Numbers of endosteal ECs, MSCs, and OBCs in primary Ctrl and BA mice.

(D) Percentage of donor-derived Gr-1+/Mac-1+ myeloid cells in the BM and blood of Ctrl and BA HSC transplanted (tx) WT mice.

(E) Numbers of endosteal ECs, MSCs, and OBCs in Ctrl and BA HSC tx WT mice.

(legend continued on next page)
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results demonstrate that MPN development is accompanied by

a striking expansion of endosteal OBCs, an increase in trabec-

ular bone formation, and BM fibrosis.

To demonstrate that MPN development is directly responsible

for the OBC expansion, we transplanted purified HSCs isolated

from primary Ctrl and diseased BA mice into sublethally irradi-

ated WT recipients (Figure 2A). Mice that received BA HSCs all

developed CML within 3 to 5 months following transplantation

(Figure 2D). Remarkably, diseased BA HSC-transplanted WT re-

cipients also showedOBCexpansion, whichwas now accompa-

nied by an increase in MSC numbers and BM fibrosis (Figures 2E

and 2F). To test whether MPN-expanded OBCs are involved in

myelofibrosis development, we transplanted unfractionated

Ctrl or BA BM cells into lethally irradiated Osx-gfp recipients,

wherein�10% of endosteal OBCs were marked by GFP expres-

sion (Figure 1E). Strikingly, diseased BA BM-transplanted

Osx-gfp recipients showed accumulation of GFP+ cells in the

BM cavity (Figure 2G), which reflected the contribution of

MPN-expanded recipient-derived Osx-GFP+ OBCs to the

myelofibrotic tissue. Collectively, these results indicate that

MPN progressively alters the architecture of the BM microenvi-

ronment and directly causes an expansion of endosteal OBCs

that, in turn, contribute to BM fibrosis.

MPN Myeloid Cells Stimulate MSCs to Overproduce
OBCs
To understand howMPN development leads to OBC expansion,

we developed an in vitro coculture/imaging approach modeling

the interactions between hematopoietic and stromal BM popula-

tions (Figure 3A). WT MSCs or OBCs were isolated from b-actin-

gfpmice and cocultured for up to 10 days with BM cells isolated

from Ctrl or BA mice. A combination of manual and software-

automated cell counting of fluorescencemicroscopy images ob-

tained with an IN Cell Analyzer 2000 was then used to determine

the number of MSC- or OBC-derived colonies and GFP+ cells

per colony. As expected, MSCs cocultured with BM cells

showed more numerous colonies than MSCs cultured without

hematopoietic cells (0.6 ± 0.7 versus 6.9 ± 3.2 colonies; n =

10; p % 0.001). In these conditions, BA BM cells significantly

increased the size of MSC-derived colonies compared to Ctrl

BM cells (Figure 3B), without changing the total numbers of col-

onies (6.9 ± 3.2 versus 6.5 ± 3.6 colonies; n = 10). In contrast, BA

BM cells had no effect on the size (Figure 3B) or the number of

OBC-derived colonies (3.7 ± 2.5 versus 4.0 ± 1.0 colonies; n =

10), hence demonstrating a specific effect of leukemic hemato-

poiesis on MSCs. Fluidigm-based gene analyses uncovered no

major differences in expression of the cell-cycle machinery in

MSCs and OBCs isolated from primary Ctrl and BA mice,

besides a significant decrease in Ccnd2 (cyclinD2) and p27

expression in BA populations (Figure S3A). EdU incorporation

experiments performed after 7 days of coculture showed that

BA BM cells directly increased the proliferation rates of expand-

ing MSC-derived cells (Figures 3C and S3B). Consistent with an

enhanced OBC differentiation, MSC-derived cells cocultured for
(F) Masson’s trichrome staining of sternums from the indicated mice. Arrows ind

(G) Immunofluorescence analyses of sternums from Ctrl and BA BM tx WT andOs

GFP+ myelofibrotic cells. Scale bar represents 250 mm.

Data are means ± SD; *p % 0.05, **p % 0.01, ***p % 0.001. See also Figure S2.
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10 days with BA BM cells also showed a smaller, more rounded

osteoblastic-like morphology and increased expression of early

osteoblastic differentiation markers as measured by quantitative

RT-PCR (qRT-PCR) analyses (Figures S3C and S3D). However,

upon differentiation, MPN-expanded OBCs did not maintain a

proliferative state, as shown in vivo by the absence of staining

with the proliferation marker Ki67 of recipient-derived Osx-

GFP+ OBCs (Figure S3E). These results indicate that MPN BM

cells directly stimulate MSCs to overproduce OBC derivatives.

We next tested the importance of leukemic myeloid cells for

OBC expansion. We first confirmed that mature BA BM cells,

rather than immature c-Kit+ stem and progenitor cells, were

responsible for the increase inMSC colony size (data not shown).

We then usedmagnetic bead depletion to obtainR 95%Mac-1+

myeloid-enriched BM cells from both Ctrl and BA mice (Fig-

ure 3D). Strikingly, we found that myeloid-enriched Ctrl BM cells

did not increaseMSCcolony size in contrast tomyeloid-enriched

BA BM cells, hence demonstrating the specific involvement of

leukemic myeloid cells. To address the reliance of OBC expan-

sion on leukemic myeloid cells, we re-exposed primary diseased

BAmice to doxycycline to block BCR/ABL expression and erad-

icate leukemic myeloid cells (Figure 3E). Following normalization

of myeloid counts, we observed a progressive decrease in OBC

numbers, with full recovery by 4 months post reinduction, and a

quick disappearance of myelofibrosis as early as 2 months post

reinduction (Figure 3F). These results are consistent with normal

turnover rates of MSCs (Park et al., 2012), and they demonstrate

that leukemic myeloid cells are both necessary and sufficient to

drive OBC expansion and to remodel the endosteal BM niche.

Both Soluble Factors and Direct Cell Contact Drive OBC
Expansion
To understand how leukemic myeloid cells stimulate MSCs to

overproduce OBC derivatives, we first used Transwell plates to

assess the relative contribution of secreted soluble factors

versus direct cell-cell interactions. Strikingly, we did not observe

a significant increase in MSC colony size whenBABM cells were

physically separated from MSCs (Figure 4A). Examination of

MSCs cocultured with myeloid-enriched BA BM cells also

showed close contacts between the two cell types throughout

the culture period (Figure S4A). These findings indicate that

direct contacts or close-proximity signals between leukemic

myeloid cells andMSCs are important in driving OBC expansion.

We then directly tested the effect of candidate factors known

to increase osteoblastic differentiation, such as interleukin-6 and

interleukin-1b (IL-6 and IL-1b) (Erices et al., 2002; Sonomoto

et al., 2012) or previously implicated in either leukemia-induced

stromal changes, such as the chemokine (C-C motif) ligand 3

(CCL3, also called MIP-1a) and granulocyte colony-stimulating

factor (G-CSF) (Frisch et al., 2012; Zhang et al., 2012), or myelo-

fibrosis development, such as TGF-b and thrombopoietin (TPO)

(Varricchio et al., 2009). Although both IL-6 and IL-1b levels were

increased in the serum of primary diseasedBAmice (Figure S4A)

(Reynaud et al., 2011; Zhang et al., 2012), neither of these
icate areas with myelofibrotic cells. Scale bar represents 250 mm.

x-gfpmice stained for DAPI (blue) and GFP (green). Arrows indicate areas with
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Figure 3. MPN Myeloid Cells Stimulate MSCs to Overproduce OBCs

(A) Schematic of the in vitro coculture/imaging approach. MSCs or OBCs isolated from b-actin-gfpmice were cultured with Ctrl orBABM cells and imaged for the

number of GFP+ cells per colony using an IN Cell Analyzer 2000. Representative images are of wells containing MSC- and OBC-derived GFP+ colonies after

10 days culture with Ctrl and BA BM cells. Scale bar represents 1 mm.

(B) Average numbers of GFP+ cells obtained per MSC or OBC colony after 10 days culture ± Ctrl or BA BM cells (n R 3 per group, with at least 11 individual

colonies scored per condition; nd, not determined).

(C) Frequencies of EdU+ cells in resorted MSC-derived GFP+ cells cultured with Ctrl or BA BM cells for 7 days and pulsed with 10 mM EdU for 3 hr (n = 7–8 per

group).

(D) Frequencies of hematopoietic cells stained with the indicated markers in unfractionated and myeloid-enriched (my) Ctrl and BA BMs, and average

numbers of GFP+ cells obtained per MSC colony after 10 days culture with Ctrl or BAmyBM cells (nR 3 per group, with at least 65 individual colonies scored per

condition).

(legend continued on next page)
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cytokines, nor tumor necrosis factor a (TNF-a), were able to

increase MSC colony size when added individually to the

cultures (Figure S4B). In addition, OBC expansion and myelofi-

brosis were still observed in primary BA mice lacking either Il-6

or Il-1r1 genes (Figures S4C and S4D), confirming that MPN-

mediated remodeling of the endosteal BM niche was largely

independent of the aberrant secretion of these proinflammatory

cytokines by leukemic myeloid cells. Among the other factors

tested, only TPO increased MSC colony size by itself (Fig-

ure 4B). Strikingly, addition of Ctrl BM cells significantly

potentiated the effect of TPO and CCL3 on MSC colony size,

but did not promote MSC expansion with either TGF-b or

G-CSF (Figure 4B). We also confirmed elevated levels of CCL3

and TPO in the BM plasma of primary diseased BA mice

and detected a trending increase in CCL3 and G-CSF levels in

the supernatant of MSC cocultures with BA BM cells (Figure 4D).

These results suggest that TPO and CCL3, in conjunction with

direct interactions between MSCs and leukemic myeloid cells,

drive the overproduction of OBC derivatives during MPN

development.

Molecular Features of MPN-Expanded OBCs
To determine whether MPN-expanded OBCs are functionally

altered, we compared the gene expression profiles of OBCs iso-

lated from primary Ctrl and diseased BA mice using Affymetrix

Gene ST 1.0 microarrays. Consistent with their identity, both

Ctrl and BA OBCs expressed high levels of osteoblast and

chondrocyte differentiation markers and low levels of MSC and

adipocyte differentiation genes, and they were not contaminated

by adherent myeloid cells (Figure S5A). Statistical analysis of mi-

croarrays uncovered 610 genes that were differentially ex-

pressed between Ctrl and BA OBCs (R1.5-fold; p % 0.05),

with 437 upregulated and 173 downregulated genes (Tables

S1 and S2). Gene ontology (GO) analyses of these genes identi-

fied processes such as extracellular matrix organization, regula-

tion of cell adhesion, and inflammatory responses as being

significantly enriched in BA OBCs (Figure 5A and Table S3). Ex-

amination of individual genes showed changes in extracellular

matrix components that are relevant for myelofibrosis develop-

ment, such as increased expression of chitinase (Chi3l1),

Spp1, and fibrinogen (Fgg) and decreased expression of several

types of collagens (Col), versican proteoglycans (Vcan), laminin

glycoproteins (Lamc1), and integrin ligands (Fbln5), as well as

increased expression of a whole range of matrix metallopepti-

dases (Mmp) and ADAM metallopeptidases (Adamts) that are

probably important for tissue remodeling (Figure 5B). BA OBCs

also displayed changes in integrin (Itg) and cadherin (Cdh)

expression levels, as well as a striking upregulation of the IL-1

superfamily of proinflammatory cytokines and many serum am-

yloids (Saa) (Figure 5B). These results were validated by subse-

quent qRT-PCR and Fluidigm-based gene expression analyses

(Figures S5B and S5C). Importantly, many of the genes upregu-

lated in primary BA OBCs were also upregulated in WT MSC-
(E) Schematic of the in vivo MPN regression experiment. Primary diseased BA an

(+dox) to block BCR/ABL expression (n = 3–6 mice per group).

(F) Percentage of Gr-1+/Mac-1+ myeloid cells in the BM of re-exposed mice and

represents 100 mm.

Data are means ± SD; *p % 0.05, ***p % 0.001. See also Figure S3.
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derived cells cocultured withBABM cells (Figure S3A), thus con-

firming that thesemolecular changes were a direct consequence

of exposure to leukemic myeloid cells. Taken together, these re-

sults demonstrate the myelofibrotic, proinflammatory nature of

MPN-expanded OBCs.

We then took advantage of our Fluidigm-based gene

expression analyses to investigate changes in signaling activity

occurring in MPN-expanded OBCs (Figure 5D and Table S4).

We found evidence of elevated TGF-b signaling in BA OBCs as

shown by increased expression of the TGF-b targets Smad7,

Timp1, and Serpine. We also observed attenuated Notch

signaling in BA OBCs as evidenced by decreased expression

of both Notch1 and Notch2 receptors and Notch targets Hes1

and Hey2. In contrast, we found no consistent trend in the status

of the Wnt pathway, with decreased expression of the Lrp5

coreceptor, increased expression of Lef1 transcription factor,

and unchanged levels of the Wnt target Cy61. Moreover, we

confirmed active inflammatory signaling in BA OBCs, with

increased expression of IL-1 receptor (Il-1r1) and receptor

antagonist (Il-1rn) and upregulation of both TNF-a (Tnf) and

IkBa (Nfkbia). These results indicate that changes in TGF-b,

Notch, and inflammatory signaling are associated with the

remodeling of MPN-expanded OBCs into inflammatory myelofi-

brotic cells.

MPN-Expanded OBCs Have Compromised
HSC-Supportive Activity
Finally, we investigated whether MPN-expanded OBCs had

altered HSC-supportive activity toward either normal HSCs or

transformed LSCs. We performed short-term in vitro coculture

experiments wherein Ctrl or BA HSCs were grown for 4 days

with Ctrl or BAOBCs (Figure 6A). Although Ctrl HSCs cocultured

with either OBC population displayed similar in vitro hematopoi-

etic expansion and myeloid differentiation activity (Figures 6B),

transplantation experiments showed significantly impaired

donor chimerism in mice injected with the progeny of Ctrl

HSCs coculturedwithBAOBCs (Figures 6C). Defective reconsti-

tution was not the result of changes in lineage distribution

(Figure S6A), but was due to reduced numbers of engrafted

donor-derived Ctrl HSCs (Figure S6B). BA HSCs also displayed

similar hematopoietic expansion and myeloid differentiation

activity when cocultured with either OBC population (Figure 6D).

However, in sharp contrast to their normal counterparts, the

engraftment ability of BA HSCs was largely independent the

OBC population on which they were cocultured (Figures 6E

and S6C). In both cases, we observed either impaired engraft-

ment or CML development eventually leading to an early death,

which was consistent with previous findings showing poor

engraftment from freshly isolated BA HSCs (Zhang et al.,

2012). These results indicate that MPN-expanded OBCs are

severely compromised in their ability to maintain normal HSCs,

whereas transformed LSCs are essentially resistant to the detri-

mental effect of BA OBCs.
d age-matched Ctrl mice were re-exposed for 2 or 4 months (m) to doxycycline

Masson’s trichrome staining of sternums from the indicated mice. Scale bar
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Figure 4. MSC Stimulation Requires TPO,

CCL3, and Direct Contact with MPNMyeloid

Cells

(A) Schematic and average numbers of GFP+ cells

obtained per MSC colony after 10 days coculture

without direct contact with Ctrl or BA BM cells in

24-well Transwell plates (n = 3 per group, with at

least 30 individual colonies scored per condition).

(B) Schematic and average numbers of GFP+ cells

obtained per MSC colony after 10 days cocul-

ture with the indicated recombinant cytokines

(50 ng/ml except for TGF-b used at 10 ng/ml) ± Ctrl

BM cells (n R 6 per group, with at least 20

individual colonies scored per condition).

(C) ELISA quantification of CCL3, TPO, and G-CSF

levels in the serum and BM plasma (BM) of primary

Ctrl and BA mice (n = 6–8 per group), and super-

natant (sup) from 10 day cocultures of MSCs with

Ctrl and BA BM cells (n = 3 per group; nd, not

detectable).

Data aremeans ± SD; *p% 0.05, ***p% 0.001. See

also Figure S4.
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We then used our microarray results, as well as confirmatory

qRT-PCR and Fluidigm-based gene expression analyses, to

address the underlying mechanism (Figures 6F, 6G, and S6D).

We found a broad downregulation ofmany HSC retention factors

in BA OBCs compared to Ctrl OBCs, including Lepr, Cxcl12,

N-cadherin (Cdh2), Scf, Angpt1, and Slit2. We also observed a

striking shift in the expression pattern of TGF-b molecules in

BA OBCs, with downregulation of the quiescence-enforcing

Tgfb1 and massive upregulation of the myeloid-promoting

Tgfb2. These molecular changes are likely to contribute to the

impaired ability of MPN-expanded OBCs to maintain normal

HSCs and to favor MPN development. Collectively, these data

identify how an MPN-remodeled endosteal BM niche can favor

LSC function by impairing normal hematopoiesis and promoting

myeloid differentiation.

DISCUSSION

Transgenic mouse models of human MPNs provide an ideal

platform for understanding how leukemic hematopoiesis dis-

rupts the normal mechanisms controlling HSC function and

blood production. Previously, we found that aberrant secretion
292 Cell Stem Cell 13, 285–299, September 5, 2013 ª2013 Elsevier Inc.
of proinflammatory cytokines by leukemic

myeloid cells establishes a feedforward

loop that drives myeloid differentiation

and CML development by influencing

fate decisions in the leukemic multipotent

progenitor compartment (Reynaud et al.,

2011). Here, we show that leukemic

myeloid cells also remodel the endosteal

BM niche into a self-reinforcing leukemic

niche that impairs normal hematopoiesis,

favors LSC function, and contributes to

myelofibrosis development (Figure 7).

These results expand our understanding

of the effects of leukemic hematopoiesis

on the BM microenvironment and the
contribution of the endosteal BM niche to MPN pathogenesis.

Moreover, they identify a previously unrecognized mechanism

for the BM fibrosis and loss of normal hematopoiesis that often

accompanies MPN development in humans. Altogether, they

uncover a close interrelationship between leukemic hema-

topoiesis and the leukemic microenvironment, which could be

exploited for the development of new therapeutic strategies.

Previous lineage-tracking studies have identified various pop-

ulations of perivascular MSC-like cells and endosteal osteopro-

genitor cells as important BM niche cells for HSCs (Frenette

et al., 2013). In parallel, several flow cytometry approaches

have been developed for isolating and interrogating the function

of different endosteal BM stromal subsets. However, it remains

unclear how these two methodologies overlap in identifying

BM niche cells important for HSC activity. Here, we used a frac-

tionation method developed by the Levesque group to isolate

BM stromal populations enriched for endosteal MSCs (Lin�/
CD45�/CD31�/CD51+/Sca-1+) and their OBC derivatives (Lin�/
CD45�/CD31�/CD51+/Sca-1�), which represents a mixture of

both immature and mature osteoblasts (Winkler et al., 2010).

We show that such phenotypically defined OBC population con-

tains cells known from lineage-tracking studies to be important



Figure 5. Molecular Features of MPN-

Expanded OBCs

(A) OBCs were purified from individual primary Ctrl

and BA mice (n = 5 per group) and used for

microarray analyses. Histogram shows the GO

results for the biological processes significantly

affected in BA OBCs.

(B) Microarray results detailing the genes involved

in extracellular matrix organization, regulation of

cell adhesion, and inflammatory response. Data

are expressed as log2 fold relative to the average

expression level in Ctrl OBCs (set to 0).

(C) Fluidigm-based gene expression analyses of

TGF-b, Notch, Wnt, and inflammation pathway

components in MSCs and OBCs isolated from

primary Ctrl andBAmice (n = 4–6 pools of 100 cells

per population). Data are expressed as log2 fold

relative to the average level in Ctrl MSCs (set to 0).

Bars indicate average levels, and �/* statistical

differences between Ctrl versus BA MSCs and

OBCs, respectively.

Data are means ± SD; *p % 0.05, **p % 0.01,

***p % 0.001. See also Figure S5.
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for HSC maintenance, including Osx+ osteoprogenitor cells,

some CXCL12hi CAR cells, and a large fraction of Nes+ MSC-

like cells. We also found that the phenotypically defined endos-

teal MSC fraction contains Nes+ MSC-like cells, and we are now

interested in extending these cross-identification approaches to

the recently described perivascular Lepr+, Mx1+, or Prx1+ MSC-

like cells (Ding et al., 2012; Park et al., 2012; Greenbaum et al.,

2013). Using a series of in vitro coculture assays followed by

imaging and transplantation approaches, we confirm the ability

of endosteal MSCs to give rise to OBCs and, most importantly,

directly demonstrate the HSC-supportive capability of endosteal

OBCs. Our results indicate that HSC niche cells are also present

at the bone surface, a finding that reinforces a role for the

endosteal BM niche in controlling HSC maintenance and blood

production.

Recent studies indicate that dysfunctional BM microenviron-

ments contribute to the development of myeloid malignancies

and that, in turn, leukemic hematopoiesis can create dysfunc-

tional BM microenvironments. Here, we asked whether MPN

development could impact the activity of the endosteal BM
Cell Stem Cell 13, 285–299, S
niche. Through analyses of primary BA

mice and LSC-transplanted WT mice, we

show that MPN development results in a

massive expansion of endosteal OBCs

associated with increased trabeculation

and trabecular thickening. These features

contrast with the severe osteoblastic de-

fects and bone loss reported in a CML

blast-crisis mouse model (Frisch et al.,

2012) and are likely to reflect fundamental

and clinically relevant differences be-

tween chronic MPN and transformed

acute myeloid leukemia (AML). We

confirm that MPN-mediated OBC ex-

pansion is not restricted to BCR/ABL
expression, because it is also observed in junB-deficient mice

(Figure S7), which develop aCML-likeMPNwith high penetrance

(Santaguida et al., 2009). Moreover, using a combination of

in vitro and in vivo approaches, we demonstrate that MPN-medi-

ated OBC expansion is driven by MSCs that are stimulated by

leukemic myeloid cells to proliferate and overproduce OBC de-

rivatives. This involvement of MSCs is in line with their high

expansion capability as compared to the restricted growth po-

tential of OBCs (Park et al., 2012). This function of leukemic

myeloid cells is also consistent with the newly described role of

monocytes and macrophages in regulating the activity of BM

niche cells and maintenance of HSCs (Frenette et al., 2013).

Althoughwedid not characterizeMPNmyeloid cells beyond their

broad expression of Mac-1, it is possible that they could contain

the leukemic and aberrantly behaving equivalents of the recently

described CD169+ macrophages (Chow et al., 2011) or F4/80+

osteomacs lining the endosteum (Chang et al., 2008; Winkler

et al., 2010). Altogether, our results show that MPN development

alters the normal activity of MSCs and their OBC derivatives,

leading to a major remodeling of the endosteal BM niche.
eptember 5, 2013 ª2013 Elsevier Inc. 293



Figure 6. Impaired HSC-Supportive Activity of MPN-Expanded OBCs

(A) Schematic of the short-term coculture of Ctrl or BA HSCs with Ctrl or BA OBCs, and follow up analyses.

(B–E) Cell numbers and methylcellulose CFU activity for the progeny of Ctrl HSCs (B) or BA HSCs (D) cocultured with Ctrl or BA OBCs. Transplantation ex-

periments for the progeny of Ctrl HSCs (C) orBAHSCs (E) coculturedwith Ctrl orBAOBCs (n = 3–5mice per group, with results replicated in another independent

experiment).

(F) qRT-PCR-based gene expression analyses of HSC-regulatory molecules in OBCs isolated from individual primary Ctrl andBAmice (n = 3 per group). Data are

expressed as fold relative to the average expression level in Ctrl OBCs (set to 1).

(legend continued on next page)
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Many factors and signaling pathways are known to stimulate

MSC growth and to control osteoblastic differentiation (Long,

2012). Here, we took advantage of our in vitro coculture/imaging

approach to demonstrate the importance of direct cell-cell inter-

actions between leukemic myeloid cells and expanding MSCs,

as well as to screen for the involvement of candidate factors

known to affect OBC production or myelofibrosis development.

Although BA myeloid cells exhibit aberrant secretion of proin-

flammatory cytokines known to increase osteoblastic differenti-

ation, we show that neither IL-6 nor IL-1b or TNF-a are involved in

MSC stimulation. We also exclude a direct role for G-CSF and

TGF-b, despite their importance for osteoblastic differentiation

and myelofibrosis development. On the other hand, we show

that both TPO, the physiologic regulator of platelet production

and a strong inducer of myelofibrosis (Varricchio et al., 2009),

and CCL3, an inflammatory chemokine that regulates MSC

migration and osteoblastic differentiation (Sordi et al., 2005; Val-

let et al., 2011), synergistically expand MSCs, especially when

BM cells are directly in contact with the cultured MSCs. Given

that both TPO and CCL3 levels are elevated in the BM plasma

of BA mice, they are probably part of the mechanism by which

leukemic myeloid cells stimulate MSCs to overproduce OBC

derivatives during MPN development. However, it is clear that

other soluble or membrane-bound factors expressed by

leukemic myeloid cells also contribute to this process. Our

results support the idea that a complex interplay in the BM cavity

between secreted soluble factors and direct interactions

between myeloid cells and MSCs controls the rate of OBC pro-

duction in both normal and disease conditions. They suggest

that distinct deregulations in this finely tuned equilibrium could

result in OBC expansion during MPN development and OBC

loss during AML development.

MPNs, unlike AML, often progress to BM fibrosis prior to

leukemic transformation, and the development of myelofibrosis

can have severe consequences even at the preleukemic stage

(Abdel-Wahab and Levine, 2009). Here, we show that MPN-

expanded OBCs accumulate in the BM cavity as inflammatory

myelofibrotic cells (Figure 7). We find clear evidence of myelofi-

brosis in both primary BA mice and LSC-transplanted WT mice

and demonstrate that MPN-expanded OBCs can directly

contribute to the myelofibrotic tissue in LSC-transplanted Osx-

gfp reporter mice. Furthermore, we show that OBCs, either

directly isolated from primary diseased BA mice or generated

in vitro by coculture of WT MSCs with BA BM cells, display

the molecular hallmarks of inflammatory myelofibrotic cells,

including changes in the expression of genes involved in cellular

adhesion, extracellular matrix remodeling, and inflammation.

Strikingly, many of the upregulated genes in MPN-expanded

OBCs are also elevated in human patients with rheumatoid and

osteoid arthritis (Okamoto et al., 2008). This convergence sug-

gests a tantalizing but still unexplored link between chronic

inflammatory diseases and MPN-associated myelofibrosis.

Given that MPN-expanded OBCs also express higher levels of

proinflammatory factors, they may directly contribute to the
(G) Fluidigm-based gene expression analyses of members of the TGF-b family in

cells per population). Data are expressed as log2 fold relative to the average leve

differences between Ctrl versus BA OBCs.

Data are means ± SD; *p % 0.05; **p % 0.01. See also Figure S6.
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overproduction of leukemic myeloid cells, thus enforcing

a vicious cycle that perpetuates MPN development and

OBC expansion (Figure 7). Pathway-directed gene expression

analyses implicate increased TGF-b and inflammatory signaling

and attenuated Notch signaling as potential contributors to the

remodeling of MPN-expanded OBCs into inflammatory mye-

lofibrotic cells. It is therefore tempting to speculate that proin-

flammatory factors secreted by either leukemic myeloid cells

or MPN-expanded OBCs, together with tissue-remodeling

factors produced by the expanded OBCs, could create positive

feedback loops driving this process, similar to the interplay be-

tween IL-1b and serum amyloids described in rheumatoid

arthritis (Okamoto et al., 2008).

Myelofibrosis is a prominent feature of PV and PMF MPNs

(Abdel-Wahab and Levine, 2009) and is observed in �30% of

patients with chronic-phase CML, where it is often associated

with poor-prognosis disease and progression to blast crisis

(Thiele and Kvasnicka, 2006). Myelofibrosis in PV and PMF

MPNs has been linked to defective megakaryopoiesis, and

impaired megakaryopoiesis can result in the development of

PV- and PMF-like MPNs in mice (Varricchio et al., 2009). In

contrast, we never observed any defects in megakaryopoiesis

in CML mouse models, including BA and junB-deficient mice

(data not shown). Here, we identify a previously unrecognized

route for the pathogenesis of BM fibrosis associated with

CML-like MPNs that involves leukemic myeloid cells driving

the expansion and remodeling of endosteal OBCs (Figure 7).

We show that both OBC expansion and myelofibrosis develop-

ment depend on the presence of leukemic myeloid cells and

can be fully reverted upon blockade of BCR/ABL expression

and recovery of normal hematopoiesis. This is consistent with

the reduction in fibrosis observed in CML-affected patients suc-

cessfully treated with tyrosine kinase inhibitors (Thiele and Kvas-

nicka, 2006), which reinforces the idea that a similar mechanism

could be operating in humans. It will now be important to directly

address its contribution to fibrosis occurring in patients with

CML, as well as in patients with PV and PMF, given that overpro-

duction of leukemic myeloid cells is also observed in these other

MPN diseases (Abdel-Wahab and Levine, 2009). Our results

implicate remodeling of the endosteal BM niche by leukemic

myeloid cells as an important mechanism for BM fibrosis associ-

ated with MPN development.

Loss of normal hematopoiesis is another event occurring in

human MPNs and during the development of most leukemias,

for reasons that still remain largely unknown. Here, we show

that leukemic hematopoiesis turns the endosteal BM niche into

a leukemic niche, which promotes LSC function and impairs

the maintenance of normal HSCs (Figure 7). We find altered

expression of many HSC-regulatory genes in MPN-expanded

OBCs, including a broad downregulation of essential HSC reten-

tion factors (i.e., Cxcl12, Scf, Lepr, Angpt1, Cdh2, Slit2, and

Tgfb1) and upregulation of factors promoting myeloid differenti-

ation (i.e., Il1b and Tgfb2). We directly show that MPN-expanded

OBCs exhibit reduced ability to maintain HSCs, which mainly
MSCs and OBCs isolated from primary Ctrl and BAmice (n = 4–6 pools of 100

l in Ctrl MSCs (set to 0). Bars indicate average levels, and * indicates statistical
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affects normal HSCs, with minimal effects on transformed LSCs.

The molecular changes we uncovered are probably responsible

for the compromised HSC-supportive activity of the remodeled

OBCs, especially with respect to decreased Cxcl12 expression,

which could directly contribute to loss of normal HSCs through

increased mobilization to the periphery (Zhang et al., 2012;

Greenbaum et al., 2013). Molecular changes in MPN-expanded

OBCs are also likely to promote MPN development by favoring

myeloid differentiation and overproduction of leukemic myeloid

cells from LSCs. The fact that LSC maintenance is unaffected

by the remodeled OBCs could be, in large part, due to their

different requirement in adhesion molecules for homing and

retention in the BM compared to normal HSCs (Gordon et al.,

1987; Krause et al., 2006). The loss of normal HSCs also prob-

ably contributes to the clonal dominance of BCR/ABL-express-

ing LSCs in transplantedmice (Reynaud et al., 2011) and patients

with CML (Holyoake et al., 1999). Moreover, such differential

retention provided by a remodeled BM microenvironment could

explain clonal dominance in situations where transformed

HSCs have impaired functions, such as in MDS and BM-failure

syndromes (Levine and Gilliland, 2008). Taken together, our

results unveil additional features of MPN pathogenesis and

uncover how leukemic myeloid cells create a self-reinforcing

leukemic BM niche that promotes MPN development at the

expense of normal hematopoiesis. Targeting this pathological

interplay could represent a novel therapeutic avenue for the

treatment of MPN-affected patients and prevention of myelofi-

brosis development.

EXPERIMENTAL PROCEDURES

Supplemental Experimental Procedures can be found in Supplemental

Information.

Mice

All the genetic models were previously published. Irradiation and trans-

plantation procedures were performed as previously described (Reynaud

et al., 2011). All mice were maintained at the University of California, San

Francisco (UCSF) in accordance with Institutional Animal Care and Use

Committee-approved protocols.

Bone Analyses

Masson’s trichrome staining was performed as described (Reynaud et al.,

2011). Bones for immunofluorescence imaging were stained with a rabbit

anti-Ki67 primary (SP6 NeoMarkers) followed by a goat anti-rabbit-A594

secondary (Invitrogen) antibody and counterstained with DAPI. Images were

taken on an IN Cell Analyzer 2000 (GE Healthcare).

Stromal and Hematopoietic Cell Analyses

Staining and enrichment procedures for flow cytometry were performed as

described (Reynaud et al., 2011; Schepers et al., 2012). Myeloid-enriched

BM cells were obtained by depleting the BM of lineage-positive cells using

purified rat anti-mouse antibodies and anti-rat Dynal beads. TPO, CCL3,
Figure 7. Model for the Leukemic BM Niche

The endosteal BM niche contributes to HSC maintenance and regulated produ

probably contributes to regulated production of bone-lining OBCs from MSCs. D

leukemic myeloid cells that secrete high levels of proinflammatory cytokines, thus

panel). Leukemic myeloid cells also directly stimulate MSCs to overproduce fu

myelofibrotic cells. These MPN-expanded OBCs are severely compromised in th

differentiation. Our results demonstrate that MPN development remodels the e

hematopoiesis, favors LSC function, and contributes to BM fibrosis. See also Fig
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and G-CSF protein levels were measured by ELISA according to the manufac-

turer’s instructions (R&D Systems and RayBiotech).

Cell-Culture Experiments

Short-term coculture experiments were performed as previously described

(Schepers et al., 2012), with each well containing the progeny of 500 HSCs

treated as follows: �5% of the cells were used to measure cell numbers and

plated at various dilutions in methylcellulose, and 95% of the cells were trans-

planted in lethally irradiated mice with helper BM cells. Coculture/imaging ex-

periments were carried out in a-modified Eagle medium containing 10% fetal

bovine serum, 13 penicillin and streptomycin, and 50mM 2-mercaptoethanol.

Unfractionated or myeloid-enriched BM cells were seeded with stromal BM

cells isolated from b-actin-gfpmice in 96-well or 24-well Transwell plates. Cells

were cocultured without medium replacement, and recombinant cytokines

were refreshed every 2–3 days. EdU labeling experiments were performed

after 7 days of coculture. Stromal-derived GFP+ cells were imaged on an IN

Cell Analyzer 2000 every 2–3 days, and automated counting was used to

enumerate the total number of GFP+ cells per condition after 10 days of cocul-

ture. The number of colonies (R20 cells) was determinedmanually and used to

calculate the average number of cells per colony.

Gene-Expression Analyses

Analyses using the Fluidigm 96.96 Dynamic Array IFC platform and qRT-PCR

analyses were performed as previously described (Reynaud et al., 2011;

Santaguida et al., 2009). For qRT-PCR and microarray analyses, RNA was

purified using the Arcturus PicoPure RNA Isolation Kit, amplified using the

NuGEN Pico WTA kit, and cleaned using the QIAGEN QIAquick PCR Purifica-

tion Kit according to manufacturers’ instructions. For microarray analyses,

sense-strand complementary DNA targets were generated using the NuGEN

WT-Ovation Exon Module, fragmented, biotinylated using the NuGEN

Encore Biotin Module, and hybridized on Affymetrix Gene ST 1.0 microarrays

according to manufacturers’ instructions.

Statistical Analyses

p values were calculated using the unpaired Student’s t test, and differences

with p % 0.05 were considered statistically significant.
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Raw and normalized expression data have been deposited in the Gene

Expression Omnibus under accession number GSE48438.
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